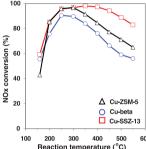


Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Journal of Catalysis Vol. 275, Issue 2, 2010


Contents

PRIORITY COMMUNICATION

Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH₃

pp 187-190

Ja Hun Kwak, Russell G. Tonkyn, Do Heui Kim, János Szanyi, Charles H.F. Peden*

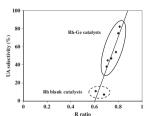
Reaction temperature (°C) NO_x conversion profiles for NH₃ SCR on Cu-SSZ-13 (squares), Cu-beta (circles) and Cu-ZSM-5 (triangles)

REGULAR ARTICLES

Grafted Ta-calixarenes: Tunable, selective catalysts for direct olefin epoxidation with aqueous hydrogen peroxide

pp 191-201

Natalia Morlanés, Justin M. Notestein*



Supported calixarene—Ta catalysts are synthesized by a one-pot procedure for the epoxidation of cyclohexene. They are stable and have turnover rates insensitive to surface density. The grafted calixarene—Ta catalysts are more active and selective to direct (non-radical) epoxidation than the corresponding ligand-free case and are more selective than the analogous Ti catalysts.

Influence of the nature of the precursor salts on the properties of Rh-Ge/TiO2 catalysts for citral hydrogenation

pp 202-210

Aurélie Vicente*, Tchirioua Ekou, Gwendoline Lafaye, Catherine Especel, Patrice Marécot, Christopher T. Williams

During citral hydrogenation on bimetallic Rh–Ge/TiO₂ catalysts, the selectivity to unsaturated alcohols is directly correlated to the ratio R ($R = \sum A(CO_{ads})$ on oxidized Rh $^{>1+}$ species)/ $\sum A(CO_{ads})$ on total exposed Rh species)) determined by FTIR. A better UA selectivity is obtained when bimetallic catalysts possess a surface in a predominantly oxidized state, a situation that is enhanced when chlorinated rhodium and germanium precursors are used.

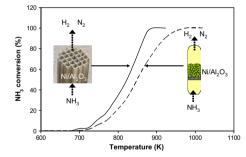
Relationships between oxygenate and hydrocarbon formation during CO hydrogenation on Rh/SiO₂: Use of multiproduct pp 211–217 SSITKA

Jia Gao, Xunhua Mo, James G. Goodwin*

$$CO (g) + H_2 (g) \xrightarrow{\qquad \qquad CH_3 OH \ (g)} CH_3 OH \xrightarrow{\qquad \qquad CH_3 OH \ (g)} CH_3 OH \xrightarrow{\qquad \qquad CH_4 (g)} CH_3 OH \xrightarrow{\qquad \qquad CH_3 OH \ (g)} CH_3 OH \xrightarrow{\qquad CH_3$$

Contrary to the relationship between the formation of CH_4 and methanol given above and recently proposed/assumed by numerous researchers; it appears, based on SSITKA, that CH_4 and methanol synthesis on Rh/SiO_2 during CO hydrogenation do not share any intermediates nor even the same sites.

Activation process of Pd/Al₂O₃ catalysts for CH₄ combustion by reduction/oxidation cycles in CH₄-containing atmosphere pp 218–227 Paola Castellazzi, Gianpiero Groppi*, Pio Forzatti, Elisabetta Finocchio, Guido Busca



Repeated reduction/re-oxidation cycles under CH_4 -containing atmosphere resulted in a one order of magnitude enhancement of CH_4 combustion activity in Pd/Al_2O_3 catalysts with different palladium load. Characterization data indicate weakening of Pd-support interactions as the main reason responsible for such activation.

Ni on alumina-coated cordierite monoliths for in situ generation of CO-free H2 from ammonia

pp 228-235

Carlos Plana, Sabino Armenise, Antonio Monzón, Enrique García-Bordejé*

We have prepared a low-cost-structured catalytic reactor very promising for in situ H2 generation from ammonia in portable devices. The monolithic catalyst shows high activity and stability, achieving a 100% conversion of pure ammonia at 880 K, while the same catalyst in packed bed achieves 100% conversion at 980 K.

Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5.5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts

pp 236-242

O. Casanova, S. Iborra, A. Corma*

5,5'-Oxy(bismethylene)-2-furaldehyde (OBMF), which is a prepolymer and antiviral precursor, has been synthesized from 5-hydroxymethyl-2-furaldehyde (HMF) using Lewis and Brönsted micro- and mesoporous aluminosilicates as heterogeneous acid catalysts.

Catalysis of the photodecomposition of carbon tetrachloride in ethanol by an Amberlite anion exchange resin

pp 243-249

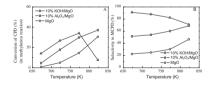
Patrick E. Hoggard*, Andrea Maldotti

Under irradiation ($\lambda > 350\,$ nm), a mixture of CCl₄ and ethanol decomposes in the presence of the Cl⁻ form of Amberlite IRA-900 to yield phosgene, acetaldehyde, chloroform, and hydrogen chloride. Chloride appears to hinder recombination of Cl and CCl₃ radicals through the formation of Cl⁻₂ ion radicals.

Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts

pp 250-256

Abhay Deshpande, F. Figueras*, M. Lakshmi Kantam, K. Jeeva Ratnam, R. Sudarshan Reddy, N.S. Sekhar

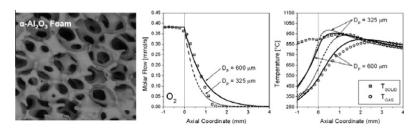

$$NO_2$$
 + H_2 PVC $NHOH$ $Zr(SO_4)_2$

Bi-functional hydrogenation of nitrobenzene into p-aminophenol using only heterogeneous catalysis, with water as solvent.

Methylation of cyclopentadiene on solid base catalysts with different surface acid-base properties

pp 257-269

Dongxue Lan, Li Ma, Yuan Chun*, Chen Wu, Linbing Sun, Jianhua Zhu

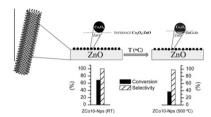


Catalytic performance of MgO in cyclopentadiene methylation was promoted by Al₂O₃ via introducing acidic sites or KOH via superbasic effect. Dehydrogenation of methanol is a key step.

Microkinetic modeling of spatially resolved autothermal CH_4 catalytic partial oxidation experiments over Rh-coated foams

pp 270-279

A. Donazzi, M. Maestri, B.C. Michael, A. Beretta*, P. Forzatti, G. Groppi, E. Tronconi, L.D. Schmidt, D.G. Vlachos

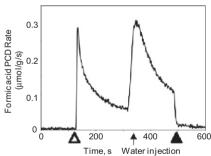

Spatially resolved CH₄ CPO experiments over Rh and Rh-washcoat foams were analyzed with a thermodynamically consistent C₁ microkinetic scheme. Experimental values of Rh surface and transport correlations for foams were adopted.

Ti-bridged silsesquioxanes as precursors of silica-supported titanium oxide catalysts for the epoxidation of cyclooctene pp 280–287 Shuko Sakugawa, Kenji Wada*, Masashi Inoue

The controlled calcination of Ti-bridged polyhedral oligomeric silsesquioxanes (POSS) supported on silicas afforded the oxide catalysts with isolated tetrahedral Ti(IV) species on the surface, which showed excellent catalytic activities for the epoxidation of cyclooctene by ^fBuOOH.

Novel hierarchical Co_3O_4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of pp 288–293 glycerol

F. Rubio-Marcos*, V. Calvino-Casilda, M.A. Bañares, J.F. Fernandez



 Co_3O_4 nanoparticles were hierarchically dispersed on ZnO microparticles using a low-energy dry mixing method. The catalytic activity of these materials was tested in the carbonylation of glycerol.

Effect of water on formic acid photocatalytic decomposition on TiO₂ and Pt/TiO₂

pp 294-299

Kristi L. Miller, Chul Woo Lee, John L. Falconer, J. Will Medlin*

Physisorbed water increased the PCD rate of formic acid on TiO_2 and Pt/TiO_2 , but with a much larger rate increase on Pt/TiO_2 . Infrared spectroscopy and temperature-programmed desorption on TiO_2 P25 showed water changed the adsorbed structure of bidentate bridging formate and displaced formic acid from the surface.